

Master in Actuarial Science Loss Reserving 02-07-2018 Time allowed: 2 hours

Solutions

Instructions:

- 1. This paper contains 6 questions and comprises 2 pages including the title page.
- 2. Enter all requested details on the cover sheet.
- 3. You must not start writing your answers until instructed to do so.
- 4. Number the pages of the paper where you are going to write your answers.
- 5. Attempt all questions.
- 6. Begin your answer to each question on a new page.
- 7. Marks are shown in brackets. Total marks: 200.
- 8. Show calculations where appropriate.
- 9. An approved calculator may be used.
- 10. Mobile phones and smartphones may not be used during the examination.

You are the actuary of a general insurance company and have received the following data showing paid claims on 31.12.2008.

Incremental	Payment delay							
Accident year	0	1	2	3	4			
2004	0	13	75	555	1142			
2005	4	23	894	4734				
2006	3	14	195					
2007	1	11						
2008	0							

Cumulative	Payment delay								
Accident year	0	1	2	3	4				
2004	0	13	88	643	1785				
2005	4	27	921	5655					
2006	3	17	212						
2007	1	12							
2008	0								

The exposure is shown in the next table.

Accident year	Exposure
2004	17050
2005	17250
2006	17200
2007	17500
2008	17200

You may assume that no claims will be paid with a delay of more than four years.

1. Bornhuetter-Ferguson method

a.	Estimate the delay-specific claim rates. By claim rate we mean claim	
	payments per unit of exposure.	[10 marks]
b.	Estimate the overall claim rate per accident year.	[10 marks]
c.	Estimate the payment pattern.	[10 marks]
d.	Estimate the outstanding claim payments for each accident year.	[10 marks]
e.	Fill the missing cells in the run-off triangle with predictions.	[10 marks]

c.									
	_	e			0	<mark>1 2</mark>	<mark>3</mark>	<mark>4</mark>	
		$\pi^*_{\scriptscriptstyle \leq e}$ (curr	ulative)	<mark>0,0</mark>	<mark>4 %</mark> 0,40 %	<mark>%</mark> 9,63 %	72,63 %	100,00 %	
		π^{*}_{e} (incre	mental)	<mark>0,0</mark>	<mark>4 %</mark> 0,36 %	<mark>% 9,23 %</mark>	<mark>63,00 %</mark>	<mark>27,37 %</mark>	
d.									
	Accident year	Exposure	Develope	<mark>d to</mark>	Observed	pi(cum.)	θ^{*}	Outstanding	<u>Ultimate</u>
	2004	<mark>17050</mark>		4	<mark>1785</mark>	100,00 %	2,45E-01	0	<mark>1 785</mark>
	2005	17250		<mark>3</mark>	<mark>5655</mark>	72,63 %	2,45E-01	<mark>1 155</mark>	<mark>6 810</mark>
	2006	17200		2	<mark>212</mark>	9,63 %	2,45E-01	<mark>3 804</mark>	<mark>4 016</mark>
	2007	17500		1	12	0,40 %	2,45E-01	<mark>4 266</mark>	<mark>4 278</mark>
	<mark>2008</mark>	<mark>17200</mark>		0	0	<mark>0,04 %</mark>	2,45E-01	<mark>4 208</mark>	<mark>4 208</mark>
	Total	86200			<mark>7664</mark>			<mark>13 434</mark>	<mark>21 098</mark>
e.									
	Accident ye	ear	0		1	2	2	3	<mark>4</mark>
	20	04	0		<mark>13</mark>	<mark>75</mark>	5	<mark>555</mark>	<mark>1142</mark>
	20	05	<mark>4</mark>		<mark>23</mark>	<mark>894</mark>		<mark>4734</mark>	<mark>1155</mark>
	20	06	3		<mark>14</mark>	195	5	<mark>2652</mark>	<mark>1152</mark>
	20	07	1		<mark>11</mark>	396	5	<mark>2698</mark>	1172
	20	08	0		<mark>15</mark>	389)	<mark>2652</mark>	<mark>1152</mark>

2. Chain ladder method

b.

a.	Estimate the development factors.	[10 marks]
b.	Estimate the payment pattern.	[10 marks]
c.	Estimate the overall claim rate per accident year.	[10 marks]
d.	Estimate the outstanding claim payments for each accident year.	[10 marks]
e.	Fill the missing cells in the run-off triangle with predictions.	[10 marks]

a.							
	e		<mark>0</mark>	<mark>1</mark>	2	3	4
	δ_e^*	1		862,50 %	<mark>2142,11 %</mark>	<mark>624,18 %</mark>	<mark>277,60 %</mark>

e		0 1	2	3	4
$\pi^*_{\scriptscriptstyle \leq e}$ (cumulati	ve) 0,03 %	<mark>% 0,27 %</mark>	<mark>5,77 %</mark>	<mark>36,02 %</mark>	<mark>100,00 %</mark>
π^{*}_{e} (increment	al) 0,03 %	<mark>% 0,24 %</mark>	<mark>5,50 %</mark>	<mark>30,25 %</mark>	<mark>63,98 %</mark>

c.a d.	nd						
Accident year	Exposure	Developed to	Observed	pi(cum.)	Overall θ_j^*	Outstanding	Ultimate
<mark>2004</mark>	<mark>17050</mark>	4	<mark>1785</mark>	100,00 %	<mark>0,104692</mark>	<mark>0,0</mark>	<mark>1 785,0</mark>
2005	17250	3	5655	<mark>36,02 %</mark>	0,910062	<mark>10 043,6</mark>	15 698,6
2006	17200	2	212	<mark>5,77 %</mark>	0,213573	<mark>3 461,5</mark>	3 673,5
2007	17500	1	12	<mark>0,27 %</mark>	0,254520	<mark>4 442,1</mark>	4 454,1
2008	17200	0	0	<mark>0,03 %</mark>	0,000000	<mark>0,0</mark>	<mark>0,0</mark>
Total	<mark>86200</mark>		7664		<mark>0,315274</mark>	<mark>17 947,1</mark>	25 611,1
e.		-		-			

Accident year	0	1	2	3	4
2004	0	<mark>13</mark>	<mark>75</mark>	<mark>555</mark>	<mark>1142</mark>
2005	4	<mark>23</mark>	<mark>894</mark>	<mark>4734</mark>	<mark>10044</mark>
2006	3	<mark>14</mark>	<mark>195</mark>	<mark>1111</mark>	2350
2007	1	<mark>11</mark>	<mark>245</mark>	<mark>1347</mark>	<mark>2850</mark>
2008	0	0	0	0	0

3. Benktander's method

With claim rates and payment pattern from question 1, apply Benktander's method to estimate the outstanding claim payments for each accident year. [10 marks]

Accident year	Exposure	Developed to	Observed	pi(cum.)	Theta_BF	Theta_CL	Credibility z	Theta_bar	Outstanding
2004	17050	4	<mark>1785</mark>	100,00 %	2,45E-01	1,05E-01	100,00 %	1,05E-01	0
2005	17250	3	<mark>5655</mark>	72,63 %	2,45E-01	4,51E-01	72,63 %	3,95E-01	<mark>1 864</mark>
2006	17200	2	<mark>212</mark>	<mark>9,63 %</mark>	2,45E-01	1,28E-01	<mark>9,63 %</mark>	2,34E-01	3 629
2007	17500	1	12	<mark>0,40 %</mark>	2,45E-01	1,72E-01	<mark>0,40 %</mark>	2,44E-01	4 261
2008	17200	0	0	<mark>0,04 %</mark>	2,45E-01	0,00E+00	<mark>0,04 %</mark>	2,45E-01	4 207
Total	86200		7664						<mark>13 961</mark>

- 4. <u>Choice of method</u>
 - a. Explain the properties of the Bornhuetter-Ferguson method and the chain ladder method (robustness, sensitivity). [10 marks]
 - b. Which method would you choose for the portfolio shown here, and why? [10 marks]

Bornhuetter-Ferguson: robust, not sensitive to change
Chain ladder: volatile, sensitive to change

- b. Definitely not chain ladder, too sensitive.
- 5. Discounting
 - For the Bornhuetter-Ferguson method and using the predictions in 1.e:
 - a. Calculate the total predicted payments per future payment year. [10 marks]

b. Calculate the discounted value of future payments using 3% interest. [10 marks]You may assume that all payments are made at the end of each year.

6. <u>Stages in the life of a claim</u>

Explain the meaning of the acronyms RNBS, IBNR and CBNI. Please do not just translate the abbreviations, but explain what it means for a claim to be "RBNS", "IBNR" or "CBNI" on a specific valuation date. [10 marks]

RBNS, reported but not settled. Used in the meaning of "reported", as settled claims may be reopened. IBNR, incurred but not reported. The loss leading to the claims has occurred on the valuation date, but we haven't received the claim yet. CBNI, covered but not incurred. The loss leading to the claims will occur (and be reported) after the valuation date, and the insurer will be liable under a policy already issued.

b. Suggest a few pieces of information that could be useful in modeling the development and estimating the ultimate cost of claims that are RBNS. [10 marks]

The number of claims, the nature of those claims, the handling and settlement stage of each claim, the age, income and health condition of the claimant, etc. etc.

c. Suggest what information could be used to model the arrival and estimate the ultimate cost of claims that are (still) IBNR. [10 marks]

Essentially, just the risk exposure, claim frequency and severity distribution.

d. Explain the meaning of this assertion:
"Statistically, CBNI claims behave in the same way as IBNR claims." [10 marks]

IBNR and CBNI claims are both unreported, thus unknown. All we know is that they arrive with a certain statistical regularity. To model their cost we must estimate risk exposure, claim frequency and severity distribution.

e. Explain the meaning of this assertion:"Know your RBNS, then IBNR/CBNI come by themselves (well, almost)." [10 marks]

The only way to model the cost of unreported claims (IBNR/CBNI) is to analyse carefully the cost of reported claims (RBNS). Having done the latter, estimating the former reduces to an exposure x frequency x severity calculation.